東京工業大学 生命理工学院 刑部研究室 Tokyo Institute of Technology,
School of Life Science and Technology, Osakabe Lab.

Publications

研究業績目録

学術論文

  1. Ahmed Afifi O, Tobimatsu Y, Lam PY, Martin AF, Miyamoto, T, Osakabe Y, Osakabe K, Umezawa T (2022) Genome-edited rice deficient in two 4-COUMARATE:COENZYME A LIGASE genes displays diverse lignin alterations. Plant Physiol. 190, 2155-2172. doi.org/10.1093/plphys/kiac450
  2. Martin AF, Tobimatsu Y, Lam PY, Matsumoto N, Tanaka T, Suzuki S, Kusumi R, Miyamoto T, Takeda-Kimura Y, Yamamura M, Koshiba T, Osakabe K, Osakabe Y, Sakamoto M, Umezawa T.* (2022) Lignocellulose molecular assembly and deconstructions of lignin-altered CAldOMT- and CAD-deficient rice mutants. Plant Physiol. in press. doi.org/10.1093/plphys/kiac432
  3. Wada N, Osakabe K, Osakabe Y.* (2022) Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems. Plant Physiol. 188, 1825-1837. doi.org/10.1093/plphys/kiac027
  4. Ha CV, Mostofa MG, Nguyen KH, Tran CD, Watanabe Y, Li W, Osakabe Y, Sato M, Toyooka K, Tanaka M, Seki M, Burritt DJ, Anderson CM, Zhang R, Nguyen HM, Le VP, Bui HT, Mochida K, Tran LP (2022) The histidine phosphotransfer AHP4 plays a negative role in Arabidopsis plant response to drought. Plant J. 111, 1732-1752. doi.org/10.1111/tpj.15920

著書

  1. Wada N, Miyaji T, Abe-Hara C, Osakabe K, Osakabe Y.* (2022) “CRISPR/Cas9 tools for multiplex genome editing in crops” in Genome Editing Technologies for Crop Improvement, Zhao, K, Mishra, R, Joshi, R.K. eds. Springer, ISBN 9789811905995, p. 95-107, 02 Aug. doi.org/10.1007/978-981-19-0600-8,

学術論文

  1. Osakabe K*, Wada N, Murakami E, Miyashita N, Osakabe Y. (2021) Genome editing in mammalian cells using the CRISPR type I-D nuclease. Nucleic Acids Res. 49, 6347-6363. doi.org/10.1093/nar/gkab348
  2. Abe-Hara C, Yamada K, Wada N, Ueta R, Hashimoto R, Osakabe K, Osakabe Y. (2021) Effects of the sliaa9 mutation on shoot elongation growth of tomato cultivars. Front. Plant Sci. 12, 627832. doi.org/10.3389/fpls.2021.627832

著書

  1. Nishitani C, Osakabe K, Osakabe Y.* (2021) “Genome Editing in Apple” in “The Apple Genome, Korban, S. (ed.), Springer, 213-225, July. doi.org/10.1007/978-3-030-74682-7_10
  2. 和田直樹、刑部祐里子、刑部敬史 (2021) 「高等動植物に利用可能な新規ゲノム編集ツールの開発」 最新のゲノム編集技術と用途展開, シーエムシー, 山本卓監修, 60-67、2月
  3. 宮地朋子、刑部祐里子* (2021) 「植物ゲノム編集の効率化を目指した発現制御と導入技術」 ゲノム編集食品 ~農林水産分野への応用と持続的社会の実現~, 第3章 導入技術の進歩, 田部井豊 監修, エヌ・ティー・エス、46-51、2月

学術論文

  1. Ohmori M, Yamane H,* Osakabe K, Osakabe Y, Tao, R. (2020) Targeted mutagenesis of CENTRORADIALIS using CRISPR/Cas9 system through the improvement of genetic transformation efficiency of tetraploid highbush blueberry. J. Horticul. Sci. & Biotech. 96, 153-161. doi.org/10.1080/14620316.2020.1822760
  2. Osakabe K*, Wada N, Miyaji T, Murakami E, Marui K, Ueta R, Hashimoto R, Abe-Hara C, Kong B, Yano K, Osakabe Y.* (2020) Genome editing in plants using CRISPR type I-D nuclease. Comm. Biol. 3, 648. *Corresponding authors. doi.org/10.1038/s42003-021-01771-5
  3. Wada N, Ueta R, Osakabe Y, Osakabe K. (2020) Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol. 20, 234. doi.org/10.1186/s12870-020-02385-5
  4. Miyamoto T, Takada R, Tobimatsu Y, Suzuki S, Yamamura M, Osakabe K, Osakabe Y, Sakamoto M, Umezawa T. (2020) Double knockout of OsWRKY36 and OsWRKY102 boosts lignification with altering culm morphology of rice. Plant Science, 296, 110466. doi.org/10.1016/j.plantsci.2020.110466
  5. Li W, Nguyen KH, Chu HD, Watanabe Y, Osakabe Y, Sato M, Toyooka K, Seo M, Tian L, Tian C, Yamaguchi S, Tanaka M, Seki M, Tran LS. (2020) Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE2 in drought adaptation of Arabidopsis thalianaPlant J. 103, 111-127. doi.org/10.1111/tpj.14712

総説および解説

  1. 刑部祐里子 (2020) 「植物におけるゲノム編集技術と応用の最新展開」 生化学 92, 3, 462-466.

著書

  1. 刑部祐里子 (2020) 「ゲノム編集技術とは」家庭科資料、実教出版、64号

学術論文

  1. Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. (2019) Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Science Advances, 5, eaax9067, doi.org/10.1126/sciadv.aax9067
  2. Akiyama R, Lee HJ, Nakayasu M, Osakabe K, Osakabe Y, Umemoto N, Saito K, Muranaka T, Sugimoto Y, Mizutani M. (2019) Characterization of steroid 5α-reductase involved in α-tomatine biosynthesis in tomatoes. Plant Biotechnol. 25, 253-263. doi.org/10.5511/plantbiotechnology.19.1030a
  3. Suzuki H, Fukushima EO, Shimizu Y, Seki H, Fujisawa Y, Ishimoto M, Osakabe K, Osakabe Y, Muranaka T. (2019) Lotus japonicus triterpenoid profile and characterization of the CYP716A51 and LjCYP93E1 genes involved in their biosynthesis in planta. Plant Cell Physiol. 60, 2496-2509. doi.org/10.1093/pcp/pcz145
  4. Miyamoto T, Takada R, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Osakabe K, Osakabe Y, Sakamoto M, Umezawa T (2019) OsMYB108 loss-of-function enriches p-coumaroylated and tricin lignin units in rice cell walls. Plant J. 98, 975-987. doi.org/10.1111/tpj.14290
  5. Toda E, Koiso N, Takebayashi A, Ichikawa M, Kiba T, Osakabe K, Osakabe Y, Sakakibara H, Kato N, Okamoto T (2019) An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nature Plants, 5, 363-368. doi.org/10.1038/s41477-019-0386-z

総説および解説

  1. 刑部祐里子 (2019) 「特集:リンゴ栽培の最新情報 リンゴでのゲノム編集の確立」 農耕と園藝 2019年2月号 21-23. 誠文堂新光社

著書

  1. 刑部祐里子、原千尋、橋本諒典、宮地朋子、刑部敬史 (2019) 「第2章17 植物でのゲノム編集」完全版ゲノム編集実験スタンダード (実験医学別冊) (分担執筆)山本卓、佐久間哲史編集、羊土社、282-295、12月

学術論文

  1. Takeda Y, Suzuki S, Tobimatsu Y, Osakabe K, Osakabe Y, Ragamustari SK, Sakamoto M, Umezawa T. (2018) Lignin characterization of rice CONIFERALDEHYDE 5-HYDROXYLASE loss-of-function mutants generated with the CRISPR/Cas9 system. Plant J. 97, 543-554. doi.org/10.1111/tpj.14141
  2. Osakabe Y*†, Liang Z†, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Jung MH, Koo OJ, Viola V, Kanchiswamy CN.*† (2018) CRISPR/Cas9 mediated genome editing in Apple and Grapevine. Nature Protocols, 13, 2844-2863. doi.org/10.1038/s41596-018-0067-9 *Corresponding authors, †Equally contribution
  3. Hashimoto R, Ueta R, Abe C, Osakabe Y, Osakabe K. (2018) Efficient multiplex genome editing induces precise, and self-ligated type mutations in tomato plants. Front. Plant Sci. 9, 916. doi.org/10.3389/fpls.2018.00916
  4. Nakayasu M, Akiyama R, Lee JH, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T, Mizutani M. (2018) Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene.Plant Physiol Biochem. 131, 70-77. doi.org/10.1016/j.plaphy.2018.04.026
  5. Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. (2018) A small peptide modulates stomatal control via abscisic acid in long distance signalling. Nature, 556, 235–238. doi.org/10.1038/s41586-018-0009-2

総説および解説

  1. Osakabe Y. (2018) Environmental sensing and plant development.Semin. Cell Dev. Biol. 83, 67-68. doi.org/10.1016/j.semcdb.2018.01.010
  2. Yamada K and Osakabe Y (2018) Sugar compartmentation as an environmental stress adaptation strategy in plants. Semin. Cell Dev. Biol. 83, 106-114. doi.org/10.1016/j.semcdb.2017.12.015

著書

  1. 刑部祐里子、刑部敬史 (2018) 「第III部18章 ゲノム編集」基礎から学ぶ植物代謝生化学(分担執筆)士反伸和、水谷正治、杉山暁史編集、羊土社、308-313、12月
  2. Sugano SS, Osakabe K, Osakabe Y. (2018) “Chaptor 23 – Crop Breeding Using CRISPR/Cas9” in “Crop Improvement Through Microbial Biotechnology” Prasad R,Gill SS, Tuteja N. (ed) Elsevier, 451–464. Mar. doi.org/10.1016/B978-0-444-63987-5.00023-2

学術論文

  1. Li W, Nguyen K, Chu HD, Ha CV, Watanabe Y, Osakabe Y, Leyva-González M, Sato M, Toyooka K, Voges L, Tanaka M, Mostofa MG, Seki M, Seo M, Yamaguchi S, Nelson DC, Tian C, Herrera-Estrella L, Tran LS. (2017) The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thalianaPLoS Genetics, 13, e1007076. https://doi.org/10.1371/journal.pgen.1007076
  2. Yamada K, Osakabe Y, Yamaguchi-Shinozaki K. (2017) A C-terminal motif contributes to the plasma membrane localization of Arabidopsis STP transporters. PLoS One, 12, e0186326. doi.org/10.1371/journal.pone.0186326
  3. Sugano SS, Suzuki, H, Shimokita, E, Chiba, H, Noji, S, Osakabe Y, and Osakabe, K*. (2017) Genome editing in the mushroom-forming basidiomycetes, Coprinopsis cinerea, optimized by high-throughput transformation system. Sci. Reports, 7, 1260. doi.org/10.1038/s41598-017-00883-5
  4. Ueta R, Abe C, Ishihara R, Watanabe T, Sugano SS, Ezura H, Osakabe Y, and Osakabe K. (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci. Reports, 7, 507, doi.org/10.1038/s41598-017-00501-4

著書

  1. Osakabe Y and Osakabe K. (2017) “Genome editing to improve abiotic stress responses in plants” in “Gene Editing in Plants” Progress in Molecular Biology and Translational Science, 149, 99-109, Elsevier, July. doi.org/10.1016/bs.pmbts.2017.03.007

学術論文

  1. Murase K, Shigenobu S, Fujii S, Ueda K, Murata T, Sakamoto A, Wada Y, Yamaguchi K, Osakabe Y, Osakabe K, Kanno A, Ozaki Y, Takayama S. (2016) MYB transcription factor gene involved in sex determination in Asparagus officinalisGenes Cells. 22, 115-123. doi.org/10.1111/gtc.12453
  2. Nomura T, Sakurai T, Osakabe Y, and Osakabe K, Sakakibara, H. (2016) Efficient and heritable targeted mutagenesis in mosses using the CRISPR/Cas9 system. Plant Cell Physiol. 57, 2600-2610. doi.org/10.1093/pcp/pcw173
  3. Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y. (2016) Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Sci. Reports, 6, 31481, doi.org/10.1038/srep31481
  4. Osakabe Y*, Watanabe, T, Sugano SS, Ueta R, Ishihara, R, Shinozaki K, and Osakabe K.* (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci. Reports, 6, 26685. doi.org/10.1038/srep26685 *Corresponding authors

総説および解説

  1. Osakabe Y, Sugano SS, and Osakabe, K. (2016) Genome engineering of woody plants: past, present and future. J. Wood Sci. 62, 217-225. doi.org/10.1007/s10086-016-1548-5
  2. 刑部祐里子、刑部敬史「第2章 4. 植物ゲノム編集の最新展開-分子育種の新技術を目指して-」「All Aboutゲノム編集」真下知士編集, 実験医学増刊 (2016) 34, 3356-3362 (104-110) 羊土社

学術論文

  1. Osakabe Y and Osakabe K. (2015) Genome editing with engineered nucleases in higher plants. Plant and Cell Physiol. 56, 389-400. doi.org/10.1093/pcp/pcu170

著書

  1. 安本周平、關光、刑部祐里子、刑部敬史、村中俊哉 (2015) 「第11章 植物でのゲノム編集」論文だけではわからないゲノム編集成功の秘訣Q&A, (分担執筆)山本卓編集、羊土社、228-244、11月
  2. 刑部祐里子、菅野茂夫、刑部敬史 (2015) 「人工ヌクレアーゼを用いた植物の遺伝子変異導入技術への応用展開」進化するゲノム編集技術(分担執筆)真下知士、城石俊彦監修, エヌ・ティー・エス, 229-233 10月
  3. Osakabe Y and Osakabe K. (2015) “Genome editing in higher plants” in “Targeted Genome Editing Using Engineered Nucleases: ZFNs, TALENs, and the CRISPR/Cas9 System” Yamamoto T. (ed), Springer -Verlag, Germany. 197-205. Jan

学術論文

  1. Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K. (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell, 26, 4954-4973. doi.org/10.1105/tpc.114.132928
  2. Osakabe Y,* Osakabe K, Shinozaki K, Tran LS.* (2014) Response of plants to water stress. Frontiers in Plant Sci. 5, 86. doi.org/10.3389/fpls.2014.00086 *Corresponding authors
  3. Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N-V, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS. (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. USA, 111, 851-856. doi.org/10.1073/pnas.1322135111
  4. Osakabe K,* Nishizawa-Yokoi A, Ohtsuki N, Osakabe Y, Toki S.* (2014) A mutated cytosine deaminase gene, codA (D314A), as an efficient negative selection marker for gene targeting in rice. Plant Cell Physiol. 55, 658-665. doi.org/10.1093/pcp/pct183
  5. Osakabe Y,* Yamaguchi-Shinozaki K, Shinozaki K, Tran LS.* (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol. 202, 35-49. doi.org/10.1111/nph.12613 *Corresponding authors

学術論文

  1. Osakabe Y,* Yamaguchi-Shinozaki K, Shinozaki K, Tran LS.* (2013) Sensing the environment: Key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 64, 445-58. doi.org/10.1093/jxb/ers354 *Corresponding authors
  2. Morimoto K, Mizoi J, Qin F, Kim JS, Sato H, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. (2013) Stabilization of Arabidopsis DREB2A is required but not sufficient for the induction of target genes under conditions of stress. PloS One, 8, e80457. doi.org/10.1371/journal.pone.0080457
  3. Abo M, Osakabe Y, Yamaguchi-Shinozaki K, Yoshimura E. (2013) Measurement of potassium contents in Arabidopsis. bio-protocol, 3, e990. doi.org/10.21769/BioProtoc.990
  4. Babak B, Iuchi S, Fujita M, Fujita Y, Takasaki H, Osakabe Y, Yamaguchi-Shinozaki K, Kobayashi M, Shinozaki K. (2013) Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Research, 20, 315-324. doi.org/10.1093/dnares/dst012
  5. Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Souk S, Abo M, Yoshimura E, Shinozaki K, and Yamaguchi-Shinozaki K. (2013) Osmotic stress response and plant growth controlled by the potassium transporters in Arabidopsis. Plant Cell, 25, 609-624. doi.org/10.1105/tpc.112.105700

総説および解説

  1. 刑部祐里子「植物の水環境の感知メカニズムとカリウムイオン輸送」バイオサイエンスとインダストリー(B&I)(2013)71, 520-524.
  2. 刑部敬史、刑部祐里子「人工エンドヌクレアーゼを利用した高等植物ゲノム改変技術の新展開」細胞工学 (2013) 5, 520-525.

著書

  1. Osakabe Y,* Osakabe K, Shinozaki K. (2013) “Plant environmental stress responses for survival and biomass enhancement” in “Climate change and abiotic stress tolerance” Tuteja, N. (ed), Wiley-Blackwell, Wiley-VCH Verlag GmbH & Co, Germany. 81-108. *Corresponding author
  2. 刑部祐里子 (2013) 「植物実験法」実験農芸化学、東京大学大学院農学生命科学研究科応用生命化学専攻・応用生命工学専攻編(分担執筆), 朝倉書店. 217-225.

学術論文

  1. Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, and Yamaguchi-Shinozaki K. (2012) GmDREB2A;2, a canonical DREB2-type transcription factor in soybean, is post-translationally regulated and mediates DRE-dependent gene expression. Plant Physiol. 161, 341-361. doi.org/10.1104/pp.112.204875
  2. Todaka D, Nakashima K, Maruyama K, Kidokoro S, Osakabe Y, Ito Y, Matsukura S, Fujita Y, Yoshiwara K, Ohme-Takagi M, Kojima M, Sakakibara H, Shinozaki K, and Yamaguchi-Shinozaki K. (2012) A rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc. Natl. Acad. Sci. USA, 109, 15947-15952. doi.org/10.1073/pnas.1207324109
  3. Tanaka H, Osakabe Y, Katsura S, Shinji M, Shinozaki K, and Yamaguchi-Shinozaki K. (2012) Abiotic stress-inducible receptor-like kinases are involved in negative regulation of ABA signaling in ArabidopsisPlant J. 70, 599-613. doi.org/10.1111/j.1365-313X.2012.04901.x

総説および解説

  1. Osakabe K. and Osakabe Y. (2012) Plant Light Stress. In Encyclopaedia of Life Sciences. http://www.els.net. doi.org/10.1002/9780470015902.a0001319.pub2
  2. Osakabe Y*, Kawaoka A, Nishikubo N, and Osakabe K.* (2012) Responses to environmental stresses in woody plants; key to survive and longevity. J. Plant Research, 125, 1-10. doi.org/10.1007/s10265-011-0446-6 *Corresponding author.

著書

  1. 刑部敬史、刑部祐里子、土岐精一 (2012) 「シロイヌナズナの部位特異的変異導入法」形質転換プロトコル(植物編) (バイオサイエンス アドバンスドマニュアルシリーズ) 編(分担執筆)、東京化学同人編集部, 372-379.
  2. Osakabe Y* and Osakabe K. (2012) “Abiotic stress responses in plants ” in “Abiotic Stress: New Research” Haryana, N. and Punj, S. (ed), Nova Science Publishers. USA, 171-180. *Corresponding author
  3. Osakabe Y* and Osakabe K. (2012) “Plant abiotic stress responses and nutrients” in “Ammonia: Structure, Biosynthesis and Functions” Fekete, V.A. and Molnár, R.L. (ed), Nova Science Publishers. USA, 91-98. *Corresponding author
  4. Ishida T, Osakabe Y, Yanagisawa S. (2012) “Transcription factors: improving abiotic stress tolerance in plants” in “Improving Crop Resistance to Abiotic Stress” Tuteja, N. (ed), Wiley-Blackwell, Wiley-VCH Verlag GmbH & Co, Germany, 591-621.
  5. Osakabe Y,* Kajita S, and Osakabe K. (2012) “Abiotic stress responses in woody plants; molecular perspective in engineering woody plant tolerance to abiotic stress and enhance biomass” in “Lignin: Properties and Applications in Biotechnology and Bioenergy” 455-466, Paterson, RJ. (ed), Nova Science Publishers. USA, 455-466. *Corresponding author

学術論文

  1. Osakabe Y*, Kajita S, Osakabe, K. (2011) Genetic engineering of woody plants; current and future targets in a stressful environment. Physiol. Plantarum, 142, 105-117. https://doi.org/10.1111/j.1399-3054.2011.01451.x *Corresponding author
  2. Yamada K, Kanai M, Osakabe Y, Ohiraki H, Shinozaki K, Yamaguchi-Shinozaki K. (2011) The monosaccharide absorption activity of Arabidopsis roots depends on the expressional profiles of transporter genes under high salinity conditions. J. Biol. Chem. 286, 43577-43586. doi.org/10.1074/jbc.M111.269712
  3. Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakura Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K. (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genomics, 286, 321-332. doi.org/10.1007/s00438-011-0647-7

総説および解説

  1. 刑部敬史、刑部祐里子、土岐精一 (2011) 「高等植物において特定の遺伝子だけを標的として破壊する技術」化学と生物 9, 592-594.
  2. 刑部敬史、刑部祐里子、土岐精一 (2011) 「人工制限酵素を利用した高等植物における標的遺伝子特異的改変技術の開発」バイオインダストリー 28巻, 6号, 53-57.

学術論文

  1. Nasrin Z, Yoshikawa M, Nakamura Y, Begum S, Uesugi M, Osakabe Y, Sonoki T, Sato K, Funada R, Iimura Y, Katayama Y, Kajita, S. (2010) Overexpression of a fungal laccase gene induces non-dehiscent anthers and morphological changes in flowers of transgenic tobacco. J. Wood Sci. 56, 460-469. doi.org/10.1007/s10086-010-1126-1
  2. Kinoshita A, Betsuyaku, S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S. (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis.Development, 137, 3911-3920. doi.org/10.1242/dev.048199
  3. Osakabe K, Osakabe Y, Toki S. (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA, 107 12034-12039. doi.org/10.1073/pnas.1000234107
  4. Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, and Yamaguchi-Shinozaki K. (2010) Overproduction of a membrane-bound receptor-like protein kinase1, RPK1, enhances abiotic stress tolerance of ArabidopsisJ. Biol. Chem. 285, 9190-9201. doi.org/10.1074/jbc.M109.051938
  5. Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, and Yamaguchi-Shinozaki K. (2010) Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J. Biol. Chem. 285, 1138-1146. doi.org/10.1074/jbc.M109.054288